20 C
Talca
InicioCrónicaAcadémica UCM creó modelo matemático para predecir mala calidad del aire

Académica UCM creó modelo matemático para predecir mala calidad del aire

proyecto FONDECYT permite que las autoridades tomen medidas oportunas referentes a la contaminación ambiental

¿Cuál es el contexto?

En el mundo real, algunos procesos siguen patrones predecibles, y uno de estos patrones se relaciona con la acumulación de partículas de la contaminación del aire, las que acumuladas gradualmente pueden llegar a niveles peligrosos para la salud, si no se limpian por condiciones climáticas como viento o lluvia. Estos episodios de contaminación pueden desencadenar alertas, preemergencias o emergencias ambientales.

¿Cuál fue la respuesta de la academia?

Debido a la variabilidad natural de estos fenómenos, existe incertidumbre en cuándo y cómo ocurrirán, la que puede abordarse utilizando modelos estadísticos, tal como lo hizo la académica de la Facultad de Ciencias Básicas de la Universidad Católica del Maule (UCM), Dra. Carolina Marchant, en su Proyecto FONDECYT 11190636 de Investigación llamado: “New multivariate models based on birnbaum-saunders distributions with applications to air pollution”.

¿Qué dijo la autora del proyecto?

“En este proyecto, nos enfocamos en desarrollar este tipo de modelos para comprender y predecir la calidad del aire en ciudades de Chile, que a menudo enfrentan problemas de contaminación debido a varios factores, como la geografía y la actividad humana”, comentó la doctora en Estadística.

¿Cóimo se diseñó?

“Los modelos utilizados resultaron ser altamente efectivos para prever cuándo la calidad del aire podría deteriorarse, lo cual es crucial para tomar medidas oportunas y proteger la salud pública. Además, colaboramos con investigadores de todo el mundo en este proyecto”, sostuvo después la Dra. Marchant.

¿Cuál es la finalidad?

“El objetivo principal del proyecto –siguió-, fue mejorar los modelos estadísticos que se basan en la idea de acumulación, especialmente aquellos relacionados con la distribución Birnbaum-Saunders. Al considerar aspectos multivariados y semiparamétricos, pudimos hacer estimaciones y predicciones más precisas sobre la contaminación del aire”, indicó.

¿En qué se traduce?

La académica de la UCM valoró el trabajo realizado señalando que “desarrollamos herramientas estadísticas valiosas para entender y anticipar la calidad del aire en ciudades chilenas. Estas herramientas están disponibles para su uso práctico, implementadas en software de uso libre como R-project y Python, y compartimos nuestros resultados con la comunidad a través de presentaciones y publicaciones científicas”.

- Publicidad -
Mantente Informado
11,071FansMe gusta
4,491SeguidoresSeguir
916SeguidoresSeguir
829SuscriptoresSuscribirte
Noticias Relacionadas